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INTRODUCTION

Several recent rev:i.ewsl—'3 have emphasised the current interest in
the study of infrared band shapes in condensed phases. Potentially such
data can provide very valuable information4-7 about the nature of the
rotational and translational motions of individual molecules and about
the intermolecular forces between them.7 However, because of the
possible ambiguities arising in the interpretation of such data, (for
example, there may be several contributions to the overall band shape7c’d)
it is clear that detailed studies on simple, symmetrical molecules are
required before studies on more complex systems are attempted. This has
been generally recognised and a number of simple (mostly linear and
symmetric toé)molecules have now been studiedl‘—10 in the compressed gas,
liquid and solution phases. We have started a systematic study of
simple nitriles and their weak molecular complexes. We report here some
interesting data for the symmetric top molecule acetonitrile in the pure
liquid and in solution in the "inert'" solvent carbon tetrachloride. As

far as we are aware the only previous work published on rotational

. - , . 11
diffusion in acetonitrile is the magnetic resonance work of Bopp.
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RESULTS

Acetonitrile belongs to the C3v molecular point group12 and its
vibrations are divided into & a; modes and 4 e modes for which the
transition moment is directed, respectively, along and perpendicular to
the symmetry axis. It is found that the shapes of bands arising from a;
and e modes have different overall shapes reflifting different rates of
rotational diffusion about axes parallel and ﬁ%fpendicular to the
symmetry axis. The a, modes give rise to bands which have a much smaller
overall band width than those arising from e modes. We have been able to
make detailed studies on the V4 (al) band near 920 cm-l and on the v7(e)
band near 1040 cm '. These bands, unlike the v,(a,) band at 2258 cm'l,
are free from overlap with other bands and reasonably accurate
transmission data (estimated accuracy + 1%) have been obtained using a
Grubb Parsons GS2A double beam spectrometer with digitised output
facilities. The band envelopes have been Fourier inverted to yield the
dipole autocorrelation functionl_3 95 as a function of time during the
vibrational transition. Typical log¢ut plots are shown in Fig.l while
in Table 1 we have summarised the spectral parameters for the bands
studied. The measurements were carried out at 25 + 2°%c. our integrated
intensity data for liquid acetonitrile are in good agreement with the

data obtained using the dispersion technique.13 The bands are

relatively weak and no serious error is expected due to lack of a
5,6

"dielectric field" correction.”’

From Fig.l it may be seen that the autocorrelation function can be
divided into two parts showing short time and long time behaviour of the
transition dipole as it rotates in the liquid. At short times, up to
about 1 p sec, the decay of ¢’is essentially Gaussian and during the

first ~ 1 p sec, therefore, essentially "free" rotation occurs. (There
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TABLE 1

Spectral Data for Acetonitrile, Liquid and Carbontetrachloride Solution

Liquid i Carbontetrachloride Soln.
l
Freq ovz? B, ¢ lprevious Freq | Avl B, ¢ |Previous
2 i 2 i
-1 -1 B, -1 -1 B,
(em )| cm i (cm 7Y em i
v3(al) 919 | 7+ 1{180 + 20 100 918 | 7+ 1[155+ 10 90
v7(e) 1042 119 + 11710 + 20 560 1039 | 20 + 1|600 + 30 250

¢ Intensity data in 1 mole~l cm™2 ("darks"), previous values from ref,13

is some evidence that this time may vary on going from liquid to
solution)., From then on intermolecular collisions occur leading to a
randomisation of the molecular motion and exponential decay ofsﬁ is
observed (the logd-t plot becomes linear). This linear part of the
curve has a slope which gives the overall rotational damping constant wy.

Following Favelukes et al5 we have,
2.303 logf(t) = -yt = —(B_+ B )t (1)

where ﬁv and Br are the damping constants for vibrational relaxation and
rotational diffusion respectively. If we assume5 that Bv < < Br we may
use the value of Br to compute rotational diffusion coefficients along
the principal axes of the molecule. Let the symmetry (C3) axis be

labelled x. The principal axes perpendicular to C, are then y and z.

3
The diffusion coefficient Dy (or Dz) is obtained from the Br value for
the ay band since only "tumbling" rotation (simultaneously) about the y

and z axes will lead to a rotation of the a, transition dipole.

1

So Dy =D, = Br(al)/z (2)

For the e mode the transition dipole is perpendicular to the symmetry

axis and it shows the effect of rotation about the x, and either the y
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3 p.sec
T
pure liquid
CClg solution
loggp (1) -
-2 A
log ¢ (1),
-
-2 fr

Fig. 1. Dipole autocorrelation functions for (A) v; (e) band at 1042 em-1
g % (aj) band at 920 cm- In case B the curves for pure liquid and
t

carbo etrach10r1de solution cou]d not be distinguished.
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or z axes. The diffusion coefficient DX is then

D= Br(e) - Br(al)/Z (3)

The results of these computations are shown in Table 2 along with the
results obtained for other, similar molecules. The relevant moments of

inertia are also included.

TABLE 2

Comparison of Rotational Diffusion Coefficients®
for Acetonitrile and Methyl Iodide

Br(al) Br(e) D D, I I
(x 1072 (x 1071 | (x 1071? | (x 10712 Ref
sec-l) sec-l) sec-l) sec_l) amuf\2 amu]i2

Acetonitrile 0'73i0‘04 1'6Qt0°10 1'29i0'10 0+3740°02 322 1550 -
(1liq.)

Acetonitrile |0°71+0°04 | 1+96+0+10 | 1+61+0+10 | 0+34+0°02 | 3+2 (55+0 | -
(CCl4 soln)

Acetonitrile- l°2b 014 6°4 {643 |11
—d3 (liq)
Methyl Todide !l°06 245 1497 0°*53 33 | 672 5
(1iq)
a. Our values obtained at ~125°C. b, values as low as 0°9 x lO12 sec‘l

are possible, (see text).

DISCUSSION

It is very interesting to compare the results for acetonitrile with
those obtained for acetonitrile-d31l and methyl iodide.5 Our results
show that 03 motion about the x axis is considerably easier than is
"tumbling” motion about the y and z axes. This is what is expected for a
molecule of this shape with moments of inertia shown in Table 2.

11
Further, our results agree quite well with those obtained =~ for
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acetonitrile-d3 using the magnetic resonance technique. (It should be
noted that there is a large uncertainty involved in the determination of
DX by the NMR method because the necessary quadrupole coupling constants
are "assumed"). However, the D values for acetonitrile are somewhat
different from those for methyl iodide, even though the moments of
inertia are very similar for the two molecules. The D values show that
rotational diffusion is more rapid for methyl iodide although, from
inertial effects alone, rotation would be expected to be somewhat more
difficult. We are led to the conclusion that intermolecular forces in
acetonitrile are considerably stronger than in methyl iodide. Such
torces would cause a much slower decay of the autocorrelation function,
This is, of course, to be expected since dipole-dipole interactions in
acetonitrile will be of considerably greater strength than in methyl
iodide (the liquid phase dipole momentsl4 are 3+*4D and 1°+48D
respectively). The relatively long period of "free'" rotationm in
acetonitrile (1 p sec as compared with ~0*2 p sec in methyl iodide)
supports the conclusions of Rothschild;7d that the formation of
"clusters" in the liquid phase is unlikely to have a significant effect
on the initial part of the autocorrelation curve. Thus, despite
stronger intermolecular forces - which affect the functiongé at long
times - acetonitrile, with a smaller Iz value is able to rotate through
a somewhat larger angle than is methyl iodide before collision induced
diffusion begins to dominate, It is however, rather surprising to find
so little difference between the D values for liquid acetonitrile and
those for the carbontetrachloride solutions (between 2 and 5M). The
implication is that the intermolecular forces are still very strong and
we are now studying weaker solutions to test more fully these

conclusions. We are also studying acetonitrile and related molecules in
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different solvents, with varying temperature, and in the presence of
other interacting molecules and ions. Meanwhile this work emphasises
the value of band shape studies in attempts to study molecule inter-

actions in condensed phases,
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